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The convective flow is described of a liquid driven by a paddle mixer with inclined flat blades 
in a cylindrical vessel equipped with four radial baffles. The flow pattern is given as a streamline 
field computed by numerical solution of the Laplace equation. The boundary conditions are 
those of the first kind (the Dirichlet problem). The model proposed is verified by direct computa
tion of the streamline field determined from the experimentally found velocity field in the system 
examined. The average relative deviation of the streamline field constructed on the basis of ex
periments from that following from the solution is better than 20%. It has been established that 
the flow pattern in a system with axial mixer and radial baffles under the turbulent regime of the 
charge is affected primarily by the relative size of the mixer and the vessel. 

In addition to the mixing due to the turbulent diffusion, the mixer causes also convective 
flow of liquid ensuring a uniform mixing in the whole volume of the charge. A quantitative 
picture of the convective flow is the flow pattern . The latter consists of streamlines computed 
from the time-averaged velocity field. Such form of the streamline field in a mixed system may 
become a basis for selecting a suitable geometrical arrangement of a batch wise or a continuous 
reactor, or, eventually, for problems of jacket-to-batch heat transfer, or solid phase suspension 
in a mixed liquid. 

The streamline field at mixing of newtonian liquids by high-speed mixers in a cylindrical vessel 
with baffles under the turbulent regime of the batch was investigated qualitatively by Rushton 
and Oldshue1 . The figures presented by authors are given with minor alterations in the following 
papers2 ,3 . A qualitative determination of the flow pattern for a radial type of mixer (turbine 
impeller or paddle mixer with vertical blades) in a vessel with or without baffles is given in papers 
of Nagata and coworkers4 ,s. The streamline field presented here is constructed from the velocity 
field obtained experimentally using a Pitot tube with several openings, or the Pitot-Pralldtl 
tube. The streamlines are determined graphically from the distribution of the vector of local mean 
velocity. The details of this method may be found in many monographs, e.g.6

. In the paper of Souza 
and Pike 7 the flow pattern is drawn in the form of contours of constant stream function - the 
streamlines - on the basis of analytical solution of the Reynolds equation for the system in qu.!s
tion. Apart from the already cited paper1 the axial type of mixers, the turbine mixer, or the paddle 
mixer with inclined blades, are dealt by Porcelli and Marrs who followed the circulation of a par
ticle in the batch. The authors report the flow pattern with two types of circulation loops: circu-
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lations originating and terminating in the region of the mixer, characterizing the so called primary 
flow, and circulations originating and terminating outside the region of the mixer, the so called 
secondary (or induced) flow. On the basis of this model the authors quantitatively describe 
the convective flow in terms of the pumping capacity of the mixer and induced flow rate. The flow 
pattern considered contains two so called dead regions where the flow rate is markedly smaller 
than in other regions of the system. The first of these regions is located around the axis of the ves
sel, the other, in the form of a spheroid, is surrounded by the streamlines. The studies of the flow 
pattern in different subregions of a mixed system with axial mixer in a vessel with baffles, obtained 
partly from experimental investigation of the velocity fields by means of the three opening direc
tional Pitot tube, partly from the results of investigation of radial distribution of axial pres
sure over the bottom, have been published in earlier papers of this series9 -14. Three conclusions 
follow from the results: 1. The maximum volumetric flow rate in vertical direction (up or down) 
exists in the plane of the mixer and decreases toward the bottom and the free surface. 2. The 
axial (under the rotating mixer also tangential) component of the mean velocity vector prevails 
in the proximity of the mixer. The radial component appears important near the bottom where 
the direction of the flow changes from a descending to an ascending one. 3. Below and above 
the plane of the mixer, in between of both mentioned streams, there is a region of relatively low 
flow rates (the dead region), delimited by a hollow cylinder with rounded bases. 4. The radial 
velocity profile manifests itself markedly in the stream of liquid ejected by the rotating blades 
of the mixer and in the stream of liquid rising toward the level along the wall of the vessel. In the 
stream entering the rotating mixer this profile is practically piston-like. These quantitative con
clusions contradict the finding of Wolf and Manning1 that the volumetric flow directed below 
the plane of the rotating mixer is not a monotone function of the vertical distance from the plane 
of the mixer, but it rather exhibits a maximum in a certain distance and only then decreases. 
This conclusion is at odds not only with the above cited papers but also with the conclusions fol
lowing from the results of determination of the average time of circulation in the system stu-

, died16• . 

The conclusions following from the papers published about flow pattern in a cylin
drical vessel with axial mixer and radial baffles under the turbulent regime of flow 
of the charge are all consistent except one. However, there is no method pro
posed thus far for quantitative description of the flow pattern. An attempt is made 
in this work to determine theoretically the streamline field in a given system with the 
use of the solution of the Laplace equation and to compare the obtained patterns 
with the spatial distribution of the streamlines obtained experimentally from the 
time-averaged velocity field. 

THEORETICAL 

Let us consider a mixed system (Fig. 1) consisting of a cylindri~al vessel with four 
radial baffles and axial mixer. The system is filled with a newtonian liquid and the 
clear liquid height, H, equals the inner diameter, D, of the vessel. In this system we de
limit two regions: A region under the mixer, VI' limited by the bottom of the vessel, 
the surface S I and appropriate part of the wall and radial baffles, and, a region above 
the mixer, VII' limited by the surface SII' the liquid level and appropriate part of the 
wall and radial baffles. For the system and regions VI and VII we introduce following 
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simplifying assumptions: 1. The system is closed for mass transfer with surroundings 
(the boundaries are the bottom, the walls with radial baffles and the liquid level). 
2. The charge is incompressible. 3. The system is axially 
symmetric. 4. The velocity on the liquid level is 
practically zero. 5. The flow pattern is related to the 
steady state. 6. The flow in regions VI and VII is irrota
tional. * Let us define now the following dimensionless 
variables: 

R == r/D; z == z/H , (1 a,b) 

Wrad == wrad/ndn , (2a ,b) 

(3) 

The equation of continuity for the system considered 
may be written as!? 

oCR Wrad) + o( WaxR) = 0 
oR oz 

(4) 

i " 

FIG.l 

and the streamline field in regions VI and VII may be 
described by the Laplace equation1? 

Sketch of Mixed System and 
Coordinates 

(5) 

With reference to the transformation equations (1 a) - (3), the stream function for gi
ven geometrical arrangement (H = D) of the system is defined by the relations 

Wrad = (l/n) (d/D)2 (l/R) op/oZ, 

Wax = -(lin) (d/D)2 U/R) oP/oR . 

Solution of Eq. (5) will be attempted for the boundary conditions given by 

P == 0, Z = Zp = 0 ; R E <0; 0'5) , 

(6a) 

(6b) 

(7a) 

The flow in the cylindrical region between VI and VII cannot be regarded irrotational 
owing to the presence of the mixer. 
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'P == 0 , Z = Zk = 1 ; R E <0; 0'5 ) , 

'P == 0 , R = Rk = 0'5; Z E <0; 1). 
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(7b) 

(8) 

The definitions (7a)-(8) are mathematical expressions of the assumptions 1 and 4. 
The boundary conditions for the surfaces Si (i = I, II), through which the liquid 
enters and leaves the regions Vi (i = I, II), are given by functions 

(9) 

These functions are obtained from the radial profiles Wax,i = Wax ,/R) , (Zi = const. ; 
i = I, II) found experimentally on the surfaces SI and SIl' and further from the rela
tions 

Zi = const., i = I, II , (10) 

where the value of the stream function at the point Rp is set equal to Zero: 

(11) 

The coordinate Rp determines that position in an arbitrary profile w;.x,j = w;.x ,j(R), 
(Zj = const.), where the axial velocity component reaches zero. That means that, with 
respect to Eq. (7b), the function 'P has a minimum at R = Rp. Eq. (10) expresses the 
radial profile of the stream function 'P. Similarly we may write for the axial profile 
of this function* 

(12) 

where with respect to the definitions (7 a) and (7b) we have 

(13) 

, By means of the relations (10) and (12) and with the aid of Eqs (11) and (13) we can 
calculate numerically both the axial and the radial profiles of the stream function. 
From the knowledge of the distribution of the stream function 'P along the bounda-

With respect to the formulation of the problem, Eqs (10) and (12) hold in VI, VII and 
on their boundaries. 
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ries of VI and VII we can find the field of streamlines by a numerical solution of the 
partial differential equation (5). This provides a set of coordinates assigned to an ar
bitrary value of the stream function satisfying the boundary conditions (7a)-(9). 
The problem posed by the solution is the boundary value problem of the first kind, 
or the Dirichlet problem, which can be solved for the system considered by some 
standard method on a computer6

• The flow pattern in the whole mixed system, 
including the cylindrical part between VI and VII' may be obtained by graphical 
or numerical interpolation of the function 'l' = P(R, z) over the region in question. 

EXPERIMENTAL 

The determination 0/ the velocity field. The field of velocities in the mixed system was evaluated 
from the results of pressure measurements with the directional Pitot tubes10 ,12 , 13. The experi
ments were carried out in a cylindrical perspex vessel with flat bottom, D = 290 mm in diameter, 
filled with distilled water at 20°C. The height of clear liquid, H, was equal to the diameter D. The 
vessel was provided with four radial baffles, O'ID wide. A six-paddle mixer with flat blades 
inclined at an angle of 45° was used16 , 18. The mixer was located in the axis of the vessel and 
rotated always in such a direction so as to drive the liquid toward the bottom. * 

Three relative dimensions diD = 1/3,1/4, /15 of mixers were used in experiments. The velocity 
measurements in the charge were carried out at three frequencies of revolution for each mixer. 
The relative height of the mixer above the bottom was h2/D = 1/4 for all mixers used. The mea
surement of the pressure distribution with the directional probes was carried out in two ways: 
1. Near the bottom and the walls of the vessel, the pressure was measured by means of hypo
dermic needles connected to the manometers and adapted into the shape of three types of direc
tional probes13 . 2. At a greater distance from the bottom and the walls, the pressure was measured 
by means of the three opening Pitot tube lO • Thus the courses were obtained of the pressure 
detected by the directional probes in several directions in different axial (vertical) distances, 
Zj' above the bottom (Table I). From these pressures the quantities w, wax' w rad ' or their 
dimensionless equivalents W, Wax and Wrad , were obtained in a given point rj (or R j ) on a given 
ray of the coordinate Zj (or Z) by the method described in the cited papers10,12, 13 of this series. 
Thus the radial profiles Wax,j = WaxjR). (Zj = con st.), and Wrad,j = WradjR), (Zj = const.), 
were obtained and further averaged from results obtained at three different frequencies of 
revolution of the mixer at a given relative size d/ D. For the region near the bottom, where 
the determination of W rad carries much smaller error than that of Wax owing to the predominance 
of the radial component over the axial one, the axial profiles Wrad,j = WradjZ), (R j = const.). 
were obtained from the already known radial profiles of W rad graphically. 

The determination 0/ tile streamline field. The radial profiles of 'P were calculated for all selected 
distances Zj (Table I) from the velocity profi les Wax,j = WaxjR). (Zj = con st.), and with the 
aid of Eq. (J 1). To calculate the courses of this function, a relation analogous to Eq. (10) for 
different Zj was used: 

The arrangement of the mixed system as well as the choice of the direction of motion 
of liquid driven by the mixer were made in accord with the arrangement used in a majority 
of practical applications e.g.: hOIllogenation o f miscible liquids, dissolution and suspension 
of solid phase in a batch or continuous system1

. 
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(14) 

Thus the radial profiles of the stream function were obtained in several vertical distances Zj 
from the bottom (Table I). These profiles were further utilized as boundary conditions for the 
differential equation (5) (relation (9» on one hand, and for comparison of the functions 'Pj = 

= 'Pj(R), (Zj = const.), obtained theoretically on the other hand. The profiles 'Pj = 'Pj(Z), 
(R j = const.), were computed in the proximity of the bottom,i.e. in the interval Z E (0'000; 0'160) 
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Axial Profile of the Stream Function (d/D = 

= 1/5) 

I 
Axial Profile of the Stream Function (d/ D = I 

Z[-l 

FIG. 3 

o Calculated from experimental velocity 
field, _ solution of the Laplace equation for 
VI' 1 R = 0·100; 2 R = 0'175; 3 R = 0,250, 
4 R = 0'300; 5 R = 0'350; 6 R = 0·450. 

= 1/4) 
o Calculated from experimental velocity 

field, • solution of the Laplace equation I 

for VI ' 1 R = 0·100; 2 R = 0'175; .1 R = 

= 0'225, 4 R = 0'300; 5 R = 0'350; 6 R = 

= 0'450. I 
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from the velocity profiles Wrad,j = WradjZ), (R j = const.), by means of the relation (12) and 
assuming validity of Eq. (13). Thus obtained axial profiles of the quantity 'P were compared 
with the results of the theoretical solution, i.e. the profiles 'Pj = 'P/Z), (R j = const.), the obtained 
by solving the partial differential equation (5) with the boundary conditions (7a)-(9) . A numerical 
solution of the Laplace equation (5) with the boundary conditions (7a)-- (9) was carried out 
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FIG. 4 

Axial Profile of the Stream Function (d/D = 

= 1/3) , 
o calculated from experimental velocity 

field, • solution of the Laplace equation for 
VI' 1 R = 0·150; 2 R = 0'200; 3 R = 0'250, 
4 R = 0'300; 5 R = 0'350; 6 R = 0·450. 
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Radial Profiles of the Stream Function 
(d/D = 1/5) 

o Calculated from experimental velocity 
field, • solution of the Laplace equation for 
Vi (i = I, II) () boundary condition for the 
Laplace equation for region Vi (i = I, II); 
1 Z = 0·0345; 2 ZI = 0'207; 3 Zn = 0'310; 
4 Z = 0·380. 
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using the over-relaxation method6 ,19 with optimization of the relaxation factor, After preliminary 
tests the magnitude of the increments was set equal to tlR = tlZ = 0·01. The computation for the 
given grid and accuracy tl 'P = 1·0 . 10 - 5 (given as the maximum difference of two consecutive 
iterations) took about one hour on an Elliot 4120 computer for one region Vi (i = I, II). For the 
type of problem in question the optimum value of the relaxation factor was found equal 1·50. 
The result of the numerical computation was the set of values of the stream function in the points 
of the grid enabling by interpolation the coordinates of the streamlines to be determined . 
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TABLE I 

Axial Coordinates of the Radial Rays Determining the Points of Measurements with Directional 
Pitot Tubes 

Number of radial ray 
Zj 0·0172 0·0345 

TABLE II 

0·069 
4 

0·104 0·380 

Average Deviation of the Theoretical Value of 'J'/Z), (Rj = const.), obtained from the Laplare 
Equation from Experimental Ones 
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Field of Streamlines in a Cylindrical System with Axial Mixer and Radial Baffles (d/D = 1/5) 
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RESULTS AND DISCUSSION 

Comparison of Experimental and Theoretical Field of Streamlines 

Figs 2 - 4 and Figs 5 - 7 show the axial respectively the radial profiles of the stream 
function obtained from experimental measurements of the velocity field and those 

. obtained from the solution of the Laplace equation (relation (5)) for the boundary 
conditions (7a)-(9). The last boundary condition Pi = PieR), (Zi = const.; i = 

= I, II) is plotted in Figs 5 -7. The course of this function exhibits considerable 
crowding of the streamlines exiting from the region VI as well as those entering the 
region VII' The same phenomenon may be observed in the stream entering the region 
VI after passage of the liquid through the space occupied by the rotating mixer (the 
liquid driven by the blades of the mixer) and was proven also in the region VI in the 
radial ray with the axial coordinate smaller than ZI of the surface14 SI' This fact 
manifests itself further by compression of the streamlines near" the bottom where 
the experimentally found functions P j = P l Z), (R j = const.), display a steeper slope 
than those calculated from Eq. (5). The behaviour of the velocity field outside the 
examined region (i.e. the cylindrical space between VI and VII) cannot be taken into 
consideration for description of the streamline field by the Laplace equation and the 

8 
.:, 

FIG. 9 

Field of Streamlines in a Cylindrical System with Axial Mixer and Radial Baffles (diD = 1/4) 
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knowledge of the behaviour of tp on the boundaries of VI alone (the boundary condi
tion (9)) does not suffice for determining the compression of the streamlines near 
the bottom expressed by the mentioned steeper slope of the function 'P j = tplZ), 
(Rj = const.),in immediate vicinity of the bottom. Accordingly, the systematic devia
tion decreases with increasing coordinate Z and its values depend both on the geo
metric arrangement in -the mixed system and the coordinate R i . Table II summarizes 
the average deviation of the theoretical values of tpi = tp/Z), (R j = const.) from those 
found experimentally near the bottom, i.e. in the range Z E (0'000; 0·0160). The 
average values of the deviations, (J'l" are given in dependence on the relative size 
of the mixer diD. From Table II it follows that the flow pattern near the bottom given 
by the streamlines in this region may be predicted on the basis of the model proposed 
with the accuracy of about 20%. From comparison of the functions tpi = 'PiR) , 
(Zj = const.), calculated from experimental results and those from the solution of Eq. 
(5), it may be concluded that in all six cases compared the differences are insignificant 
with respect to inaccuracies of determination of the profiles tpi = IJI/R), (Zj = const.), 
from corresponding experimental profiles of the axial component of local velocity. 
However, systematic deviations appear again and their origin is identical with that 
given above for the differences between the theoretical and experimental course 

-.08 

z[-1 

FIG. 10 

R[-] 

§ 
6 

R[-] 

Field of Streamlines in a Cylindrical System with Axial Mixer and Radial Baffles (din = 1/3) 
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of the stream function. The description of the streamline field in a system with axial 
mixer and radial baffles by the Laplace equation may be regarded as an approxima
tion for region VI' and above all for VII' which differs from reality within errors 
mentioned above. 

Field of Streamlines in a System with Axial Mixer and Radial Baffles 

Figs 8 - 10 show the field of streamlines in the system examined, obtained from the 
above described solution of Eq. (5). The contours of constant stream function form 
the flow pattern, since, as it is known 17, the stream function is constant along a stream
line. The streamlines passing through the cylinder between the regions VI and VII 
were obtained by graphical interpolation of the curves of appropriate values of the 
stream function and by making use of the conclusions of paper12 dealing with the 
flow in this volume. It was not possible to solve the Laplace equation for the volume 
between the region VI and VII since it cannot be expected that assumption 6 would 
hold there12 ,2o. It was found on the basis of the preliminary calculations that Eq. (5) 
cannot be solved for the boundary condition (9) specified at the inlet and the exit 
of the region occupied by the rotating mixer either and, consequently, that the solution 
of the Laplace equation cannot be obtained for the whole system at once. The reason 
was that the results of this approach differed markedly and systematically from the 
results of experimental determination of the streamline field and it was therefore 
necessary to divide the volume of the mixed batch into the volumes VI and VII and 
to solve Eq. (5) there separately. 

Nu~erical values assigned to individual curves in Figs 8 -10 (numbers with four 
digits) are the appropriate values of the stream function. Broken line show the 
boundaries of the regions VI and VII> i.e. the surfaces SI and Su. From the flow 
patterns found it follows that their shape is affected primarily by the geometric 
arrangement of the mixed system. The field of streamlines is deformed by the source 
of the convective flow (the mixer) and the deformation is the greater the smaller is 
the relative size of the mixer. At the same time the maximum value of the stream 
function increases in a given cross-section. This dependence was evaluated quantita
tively10 -12,16 and the following proportionality for the axial distance from the bottom 
was obtained 

'1' max ,Z = const. = C(d/D)-l , (15) 

where the parameter C decreases with increasing distance from Z = h2 /D. The flow 
pattern is affected primarily in the region below the rotating mixer (region VI), since 
the lower radius of the cone through which the liquid passes from the volume VII 
into VI changes markedly12 with the relative size of the mixer and the vessel (Figs 
5 -7). This factor, however, affects not only the course of streamlines at downward 
flow but also their course near the bottom and at upward flow where even a relatively 
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smaller mixer causes a greater compression of the streamlines. The turns of the 
streamlines below the rotating mixer do not appear the same for all streamlines. Practi
cally all liquid changes its direction by 180°. In doing so one part turns gradually, i.e. 
in two turns approximately by 90°. In between it flows horizontally along the bot
tom. The other part travels on paths uniformly turning from the original direction 
into the reverse one. This fact confirms the considerations regarding the flow pat
tern following from the results of measurement of the force action of the flow on the 
bottomll. . 

The character of the streamlines near the bottom explains also why radial profile 
of axial pressure on the bottom exhibits a section of subatmospheric pressure. A higher 
density of streamlines near the bottom points to an increase of kinetic energy in this 
region (indicated by pressure probes) and consequently the static pressure must 
decrease in order that the mechanic energy balance is preserved. The flow pattern 
above the rotating mixer (region VII) is not affected very markedly by the relative 
size of the mixer since the distribution of the streamlines over the surface Sn is inde
pendent12 of the ratio diD (5-7). 

The flow pattern obtained corresponds better with the qualitative considerations published ear
lier1 •8 . The deformation of the streamlines under the mixer has not been published to date and 
could not be taken into consideration in qualitative construction of flow patterns. The intensity 
of convective flow in a mixed charge, defined as a flow per unit area (or in the proposed construc
tion of the flow pattern as a number of streamlines per unit area), in different parts of the system 
can be compared with the results of measurement of spatial homogeneity of the charge21 . The re
gions insufficiently affected by the convective flow need a substantially longer time to achieve 
a requested homogeneity than those with intensive convection. Although the rate of homogena
tion is affected also by turbulent diffusion, the importance of uniform intensive flow in the whole 
charge stands out from the results of such measurements when the former form of mass transfer 
diminishes owing to the increasing viscosity. When the effect of turbulent diffusion is diminished 
the field of contours of constant rate of homogenation approximates the field of streamlines: the 
contours of constant stream function. The region of insufficient mixing is then almost identical 
with the "dead region" passed, at the given grid, by no streamline21 . Another "dead region", 
located under the mixer along the axis of the vessel, is interesting more from the point of view 
of solid suspension as a region where settling of the solids occurs and the sediments form 2. 
The flow pattern obtained confirms also the justification of the wall-to-batch heat transfer mode]22. 
This mode] is based on assumption of different character of flow near the wall and bottom and 
hereby on different mechanism of wall heat transfer in these regions: Near the bottom the charac
ter of the flow is dissipative, induced by the change of direction of flow. Near the wall the flow 
is practically without dissipation because the flow is straight and no sudden turns occur. These 
facts (in cit.22 proven by heat transfer measurements in both regions) are confirmed by the flow 
pattern obtained and moreover the existence of dissipative region near the bottom is indicated 
by the results of spatial inhomogeneity of the rate of dissipation of mechanical energy in the system 
examined 12. 

The results may be useful also for description of the streamline field in a homo
geneous continuous stirred reactor as long as the ratio of the volumetric flow rate to 
the pumping capacity of the mixer is negligible. Even in those cases, however, when this 
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stipulation is not met, conclusions can be drawn for design purposes, such as e.g.: 
location of the inlet, outlet etc., ensuring that the mixing effect of the stirrer is made 
best use of. That means that the substance added is brought by the convective flow 
into the proximity of the rotating mixer before withdrawing the product. Location 
of the inlet immediately above the· mixer and the outlet into the space above the mixer 
near the wall (preferably in several places distributed evenly on the circumference 
of the vessel) will ensure that fresh reaction mixture will be homogenized rapidly 
in region VI' 

LIST OF SYMBOLS 

C constant in Eq. (I5) 

D diameter of vessel (m) 
d diameter of mixer (m) 
H clear liquid height (m) 
112 height of center of mixer above bottom (m) 

summation index 
j summation index 
k index denoting final value for variables Rand Z 

frequency of revolution of mixer (s -1) 

p index denoting initial value for variables Rand Z 
R dimensionless radial coordinate 

radial coordinate 
SI surface separating. VI from the rest of charge (m2) 

SII surface separating VII from the rest of charge (m2
) 

VI .volume of region under mixer (m3 ) 

VII volume of region above mixer (m3) 

W dimensionless mean velocity vector 
Wax axial component of vector W 
Wrad radial component of vector W 
W absolute value of vector W 
w absolute value of mean velocity vector w (m s -1) 

Wax axial component of vector w (m s-l) 
wrad radial component of vector w (m s -1) 

Z dimensionless coordinate of axial distance 
coordinate of axial distance (m) 

!If stream function (m3 s -1) 

P dime~sionless stream function 
0"'1' average deviation of theoretical and experimental values of function P/Z), (R j = const.) 
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